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Abstract—This paper presents a multi-stage crop planting
strategy optimization model utilizing the Particle Swarm
Optimization (PSO) algorithm. The model aims to address key
challenges in agriculture, such as fluctuating market demands,
climate variability, and rising production costs. Over a seven-
year planning horizon (2024-2030), the model dynamically
adjusts crop planting strategies by integrating factors like crop
yield, market prices, and crop rotation. The proposed framework
optimizes both crop selection and area allocation to maximize
economic profitability while maintaining sustainable practices.
Unlike traditional static models, this approach accounts for
uncertainties and adapts to real-time changes in market
conditions. The model's ability to adjust planting strategies based
on PSO ensures that farmers can optimize yields and reduce
waste through flexible decision-making. Experimental results
demonstrate the model's effectiveness in dynamically optimizing
planting strategies while satisfying constraints such as land
availability and crop rotation.

optimization Model; Crop Planting; mathematics modeling;
multi-stage optimization; PSO

I. INTRODUCTION
The production of foodstuffs for human consumption is a

fundamental aspect of global food security. However, this
sector is confronted with a number of significant challenges,
including climate change, unpredictable market demands and
fluctuating production costs. In this context, the optimization of
crop planting strategies assumes great importance, in order to
guarantee both economic viability and sustainability. The
majority of traditional crop planning approaches rely on
historical data or static models, which are unable to adapt to the
inherent uncertainties associated with climate and market
fluctuations[1-3].

II. RELATEDWORK

Marius et al. proposed a multi-objective model for
agricultural crop planning in 2011, considering weather risk,
market risk and environmental risk. They proved that the
minimum environmental risk problem is equivalent to a mixed-
integer problem with a linear objective function[4]. Ángel et al.
proposed a multi-stage linear programming model for planting
plan decisions under the new Common Agricultural Policy in
2019, determining the planting plan that maximises net income
within a given time frame[5].

Multi-stage optimization models have been used in a
variety of agricultural contexts to deal with uncertainties in
market demand, environmental change and resource allocation.
Traditional optimization techniques, such as linear
programming, are designed to maximise short-term profits.
However, they lack the flexibility to deal effectively with long-
term fluctuations in yield and demand.

More recent approaches, such as particle swarm
optimization (PSO) and dynamic programming, have been
integrated to facilitate continuous adjustment to market
changes.Yubao et al. established a water-saving planting
structure optimization model in 2019 by combining multi-
objective chaotic particle swarm optimization algorithm
(MOCPSO) with chaos technology[6]. Oscar et al. established
a milk production optimizer that combines weather dynamics
in the same year with the ability to deeply analyse the
interrelationships between weather and price uncertainty on
decision-making[7].

Although multi-objective optimization methods have been
proposed in previous studies, the impact of multi-stage
uncertainty is rarely considered in complex planting
environments, such as the diverse terrain in northern China.
The multi-stage optimization model proposed in this paper
integrates various factors such as climate change, market price
fluctuations, crop rotation requirements, and land use
restrictions to dynamically adjust planting strategies. The
particle swarm optimization algorithm achieves the dual
optimization objectives of crop yield and economic benefits in
fluctuating environments, ensuring that planting strategies can
adapt to constantly changing market and environmental
conditions.

III. METHODS

A. Problem Formulation
The crop planting strategy has been devised with the

objective of optimising crop selection and area allocation over
a seven-year period (2024-2030) on the basis of crop yield,
planting costs and market prices. In formulating this strategy,
due consideration has been given to the potential for
uncertainty in future demands and production costs. The model
comprises three principal components.



Crop yield prediction: The model indicates that annual
yield fluctuations are likely to occur within a range of±10%.

Planting cost projection: This calculation is based on the
assumption of a 5% annual increase in planting costs.

Market price variability: The market prices of vegetables
are modelled with a growth rate of 5%, whereas those of
mushrooms, including shiitake, are modelled with a decrease of
1-5%.

B. Multi-stage Optimization Framework
Objective Function.

The profit ��� � for a given crop j in year t is computed as:

��� � = min �� × ���,��� × �� +max 0,�� × ��� − ��� ×
0.5 × �� − �� × ��� (1)

Where:

�� is the crop yield per unit area,

���is the area planted with crop j,

���is the expected sales volume,

��is the market price of crop j,

��is the planting cost per unit area.

Constraints.

Land constraints: The total planting area for all crops must
not exceed the available land area for each plot.

�
 ���� � ≤ �total (2)

Crop rotation: Each plot must rotate crops, and legumes
must be planted at least once every three years to ensure soil
health.

�� � ≠ �� � − 1 (3)

Market demand constraint: The total sales cannot exceed
80% of the predicted yield for each crop, ensuring some margin
for unforeseen demand shortfalls.

The Multi-stage Optimization Framework algorithm can be
found in Pseudocode 1.

Pseudocode 1. Multi-stage Optimization Framework

C. Particle Swarm Optimization (PSO) Application
Given the high-dimensional nature of the problem, Particle

Swarm Optimization (PSO) is used to dynamically adjust
planting strategies over time. Each particle represents a
potential planting strategy, and its fitness is evaluated based on
the objective function. The algorithm iterates through potential
solutions, updating positions and velocities based on the best-
performing particles[8].

Key steps in the PSO algorithm include:

Initialization: Randomly initialize particle positions
representing different crop planting areas.

Fitness Evaluation: Calculate the profit for each particle
based on the objective function.

Update Rules: Update the position of each particle based on
its personal best and the global best.

Iteration: Continue iterating until convergence or reaching a
maximum number of iterations.

The specific steps of the Particle Swarm Optimization
algorithm are shown in Pseudocode 2.

Pseudocode 2. Particle Swarm Optimization

D. Model Adjustments for Uncertainty
To accommodate uncertain factors such as fluctuating

market demands and changing production costs, the model
adjusts planting areas dynamically each year. Crop yield and
market price are adjusted according to observed trends and
real-time data.

IV. RESULTS AND DISCUSSION

Our dataset comes from Contemporary Undergraduate
Mathematical Contest in Modeling - 2024, which includes
existing farmland in a given rural area, crops planted, crop
planting situation in 2023 and sales data collected in 2023[9].



A. Experiment Setup and Data Preprocessing
To evaluate the performance and robustness of the multi-

stage optimisation model, experiments were designed based on
real data from 2023 to 2030. These experiments simulate
planting strategies on different land types, market fluctuations
and climate changes.

The dataset includes information on various crops such as
wheat, soybeans and speciality crops such as shiitake
mushrooms. Key data points include：

Yield per unit area (��)
Planting costs per unit area (��)
Selling price per unit (��)

This article employs the Kolmogorov-Smirnov (K-S) test to
ascertain whether a given dataset adheres to a normal
distribution. The test entails a comparison between the
empirical cumulative distribution function and the theoretical
distribution, with the maximum difference between them being
calculated. Should the difference be below the critical value,
the data is deemed to align with the theoretical distribution.
The single-sample K-S test is frequently employed to ascertain
whether data adheres to a known distribution, with the null
hypothesis being that the data originates from a one-
dimensional continuous distribution F [10]. The test statistics
are as follows:

Z = nmaxi Fn xi−1 − F xi , Fn xi − F xi (4)

H is true, Z converges to the Kolmogorov-Smirnov
distribution according to the distribution. That is, if the sample
is taken from a one-dimensional continuous distribution F:

� → � = sup|�(�(�))| (5)

The outcome of a KS test is typically a p-value. If the p-
value is less than the significance level (typically 0.05), the null
hypothesis is rejected, indicating that the two samples are
deemed to originate from disparate distributions.

Table 1. Data Preprocessing

indicator name per mu yield planting cost sales price

test results false false false

Therefore, for data that does not follow a normal
distribution, we introduced a box plot to handle outliers. Box
plot theory does not require data to follow a normal distribution
and can intuitively describe the discrete distribution of data. It
also provides a criterion for identifying outliers, where values
greater than or less than the upper limit set in the box diagram
are considered outliers.

The detection data should be sorted in ascending order,
from �1, �2, �3, ⋯⋯, �� , in order to obtain an ordered sequence.
The median M is then calculated as follows:

� =

X
n+12

, n is an odd number

1
2

Xn
2
2
+ X1+n2

, n is an even number
(6)

The criteria for determining outliers are:

�1 > � + � ∙ ���∣�1 < � − � ∙ ��� (7)

In this context, the upper quartile point is represented by U,
the lower quartile guard point is represented by L, the
interquartile range is represented by IQR, the step size
coefficient is represented by L, and the value of K is 1.5.

B. Experimental Procedure
The objective of this experiment is to conduct a

comprehensive evaluation of two key scenarios. Primarily, the
experiment seeks to optimise economic returns, taking into
account market demand, production costs, and the evolving
trends in crop sales prices from 2024 to 2030. Secondly, the
experiment will also assess the efficacy of two distinct
marketing strategies: one involves discarding the remaining
products, while the other entails selling the remaining products
at a 50% discount from the original price.

This article establishes several test cases to simulate various
market and environmental fluctuations, and combines
constraints to ensure comprehensive scenario analysis.

Yield fluctuation:±10% variation in annual yield.
Market demand variation: ±5% for vegetable crops, 5-10%
increase for staple crops such as wheat and corn.
Cost increase: 5% annual increase in planting costs.
Price trends: Vegetable prices increase by 5% annually,
while specialty crop prices such as mushrooms decline by 1-
5% annually.

Summary of model formulas

Fitness �� = �=1
�

�=1
�

�=1
� min ��,� × ��,�,�,��,�,� × ��,� +���

max 0,��,� × ��,�,� − ��,�,� (8)

�� � + 1 = ��� � + �1�1 �best,� − �� � + �2�2 �best − �� �
(9)

�� � + 1 = �� � + �� � + 1 (10)

C. Results and Discussion
Through iterative search using a particle swarm

optimization algorithm, the planting plan corresponding to the
global optimal solution �best is the optimal planting strategy for
each plot and season for the next seven years. The optimised
planting plan includes crop types and planting areas for each
plot and satisfies all planting constraints. The specific results
are shown in Figures 1 and 2.

Figure 1. Global optimization solution after 1000 iterations



Figure 2. Global Best Value Over lterations

The experimental results show that the multi-stage
optimisation model effectively manages market and
environmental fluctuations. Dynamic pricing and discounting
of surplus products reduce waste and improve profitability.
Crop rotation, integrated into a PSO-based model, ensures
legumes are planted every three years, enhancing soil health,
yield, and reducing fertiliser dependence.

Overproduction leads to significant profit loss, especially
for crops with fluctuating demand, like mushrooms. However,
selling surplus at a 50% discount boosts profitability. High-
yield crops, such as wheat and shiitake mushrooms, benefit
from reduced waste and flexible pricing, greatly increasing net
profits.

Figure 3. PSO Training Loss Over lterations

Figure 4. NSGA-Ⅱ Training Loss Over lterations

To further reinforce the research, this article also employed
transfer learning, utilising the NSGA-Ⅱ algorithm referenced in
the GIS spatial optimisation research on agricultural crop

allocation to resolve the objective function[11]. Following
testing, after 1000 iterations of training, the mean training loss
of PSO was found to be considerably lower than that of NSGA-
Ⅱ, as illustrated in Figures 3 and 4. This suggests that the PSO
algorithm demonstrates efficacy in addressing specific
problems analogous to those presented in this article.

V. CONCLUSIONS
This study proposes a multi-stage crop planting strategy

optimisation model based on the particle swarm optimisation
algorithm. By dynamically adjusting planting strategies to cope
with uncertainties such as market demand fluctuations and
environmental changes, this model successfully achieves a
balance between economic profitability and sustainable
agricultural practices. The integration of PSO enables adaptive
decision-making, allowing farmers to optimise crop yields
while respecting constraints such as crop rotation and land use
restrictions. The flexibility of this model ensures that planting
strategies can develop with changes in conditions, thereby
maintaining long-term profitability. In the future, the
integration of IoT intelligent sensors to monitor environmental
factors could be considered, which would provide real-time
data for the model and continue to optimise and promote the
model.
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