
A probability prediction model for flood disasters based on 
Multi-layer Perceptron 

Yiquan Wang*1, Jialin Zhang1 and Yuhan Chang1 

1College of Mathematics and System Science, Xinjiang University, Urumqi, Xinjiang, 
830046, China 
 
*Corresponding author's e-mail: ethan@stu.xju.edu.cn 

Abstract. Flood disasters are characterized by high frequency, severe destructive power, and 
extensive impact. The prediction of flood disasters holds great significance. This paper 
proposes a flood disaster prediction model based on a multi-layer perceptron (MLP). Firstly, 
the model employs the Spearman correlation coefficient and random forest feature importance 
algorithm to identify the most influential feature indicators. Subsequently, an MLP neural 
network is established, trained, and optimized. Experimental findings demonstrate that the 
model accurately forecasts the likelihood of flood disasters through sample processing, 
achieving a coefficient of determination of approximately 85.27%. 

1.  Introduction 
Floods, caused by intense or sustained precipitation that inundates low-lying regions, are among the 
most significant natural disasters worldwide [1]. Flood disasters have wrought havoc on the safety of 
residents in affected areas, underscoring the need for enhanced scientific understanding and improved 
response strategies. Consequently, predicting the probability of flood disasters is of great significance. 
Flooding is a complex process affected by precipitation events, basin characteristics, and natural 
geographical conditions. The flood process exhibits strong nonlinearity, non-stationarity, and 
stochastic characteristics [2]. The utilization of remote sensing and Geographic Information System 
technology for flood risk delineation has progressively emerged as the primary approach for 
identifying flood risks [3]. Commonly used methods include the Analytic Hierarchy Process (AHP), 
Frequency Ratio models, and machine learning approaches. 

In 2016, Khosravi et al. [4] utilized the AHP to evaluate flood risk by determining the relative 
importance of various factors influencing flood susceptibility. In 2020, Costache et al. [5] utilized the 
Fuzzy Analytic Hierarchy Process (FAHP) to identify and categorize the valleys within the study area 
based on their susceptibility to flash floods. The AHP model was used to compute the flood potential 
index along the mountain flood valleys to ascertain the potential for flooding caused by the 
propagation of mountain floods. However, the AHP method primarily relies on the subjective 
judgment of scholars, who assign weights to each indicator feature based on experience. This reliance 
on subjective input can introduce bias, potentially affecting the objectivity of the final results. 

Based on the frequency ratio model, Youssef et al. [6] applied an ensemble method of Frequency 
Ratio (FR) and Logistic Regression (LR) in 2015. This combined approach can generate a 
comprehensive model that assesses the impact of various conditional factors and the influence of 
different classes of each conditional factor on landslide occurrence, providing accurate assessments for 
disaster management and decision-making. In 2016, Khosravi et al. [4] conducted a binary statistical 



analysis (BSA) to analyze the impact of various factors on floods, creating receiver operating 
characteristic curves and the area under the curve (AUC) for different flood sensitivity maps. 
However, it is essential to acknowledge that the frequency ratio model has limitations due to its 
reliance on historical data, which may not effectively account for the interactions between factors. 

With the emergence of artificial intelligence, machine learning models have become widely 
utilized. In 2014, Radmehr et al. [7] employed an Artificial Neural Network (ANN) to address 
disagreements among decision-makers by providing an alternative to traditional weighting methods 
used in decision-making analysis. In 2018, Khosravi et al. [8] conducted a study testing four machine-
learning models based on decision trees for flash flood susceptibility mapping. 

This article establishes a flood disaster probability prediction model based on MLP. The approach 
involves conducting Spearman correlation analysis to examine the relationships between variables. 
Subsequently, random forest feature importance analysis is used to assess the significance of various 
feature indicators. Finally, an MLP model is trained, and L2 is regularized to predict the likelihood of 
flood disasters. 

2.  Preliminaries 

2.1.  Data acquisition and preprocessing 
This study is mainly based on flood data from the Asia and Pacific Mathematical Contest in Modeling, 
as detailed in Reference [9]. The dataset includes various indicators such as flood occurrence 
probability, infrastructure deterioration, terrain drainage, and monsoon intensity. Since the original 
observation data contains over 700000 flood-related information, we began with a preprocessing 
phase. 

To ensure the integrity and consistency of flood indicator data while removing potential noise and 
redundancy, we first conducted a series of screenings and processing for potential missing and outlier 
values in the dataset. After review, there are no missing values in the dataset, and the results are 
plotted in Figure 1.  

 

Figure 1. Data preprocessing - missing value search. 

2.2.  Spearman correlation analysis 
We used the Spearman correlation coefficient for correlation research, which measures the non-
parametric correlation between variables based on their ranks. This method is particularly effective for 
identifying relationships between two continuous variables [10]. The absolute value of the Spearman 
correlation coefficient approaches 1, indicating a stronger correlation. N represents the number of 
samples, while d suggests the rank difference between paired variables. The formula for calculating 
the Spearman correlation coefficient is presented in Formula (1): 
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The Spearman correlation coefficients between various features and flood probability are presented 
in Table 1: 



Table 1. Correlation coefficients between different features and the probability of flooding. 

Feature Coefficient Feature  Coefficient 
Flood probability 1.000000 Population score 0.188808 

Deterioration of infrastructure 0.192852 Landslide 0.187898 
Terrain drainage 0.191362 Climate change 0.187465 

Monsoon intensity 0.191353 Deforestation 0.187441 
Dam quality 0.189720 Invalid disaster prevention 0.186922 

Sedimentation 0.189705 Agricultural practice 0.186685 
River management 0.189569 Others ൏0.18614 

2.3.  Importance analysis of random forest features 
Random Forest is an ensemble machine learning algorithm that is a classifier composed of multiple 
decision trees that aggregate their prediction results to improve the accuracy and stability of 
classification. The results of Figure 2 indicate that inadequate planning, coastal vulnerability, terrain 
drainage, urbanization, and population score are the main factors affecting flood risk. 

 

Figure 2. Analysis results of the importance of random forest features. 

2.4.  Sensitivity analysis 
Sensitivity analysis is a vital research technique to examine how changes in model variables or 
environmental conditions affect the model's state or output. The analysis is achieved by adjusting 
specific parameters within the model and observing the resultant impact on its outputs, thereby 
revealing the influence of these parameters on the model's performance. The findings are detailed in 
Figure 3, Table 2, and Table 3. 
 

 

Figure 3. Sensitivity analysis result chart. 



Table 2. Sensitivity analysis of the initial situation. 

 Precision Recall F1-score Support 
0 0.94 0.94 0.94 261683 
1 0.93 0.93 0.93 272199 
2 0.93 0.93 0.93 354086 

Accuracy   0.93 887968 
Macro avg 0.93 0.93 0.93 887968 
Weighted 0.93 0.93 0.93 887968 

 

Table 3. Model accuracy after removing a certain feature. 

Condition Accuracy (%) 

Initial 0.93 
Remove urbanization 0.92 

Remove population score 0.91 
Remove terrain drainage 0.90 

Remove coastal vulnerability 0.68 
Remove planning deficiencies 0.68 

 
This analysis shows inadequate planning and coastal vulnerability are the most significant factors 

affecting flood risk prediction. Eliminating these factors would substantially impair the model's 
performance. Terrain drainage, urbanization, and population scores are also crucial features, and their 
removal would also result in a notable decline in the model's effectiveness. 

3.  Establishment of multi-layer perceptron modelreliminaries 
The MLP model is a fully connected feedforward neural network model that continuously modifies 
weight values during training iterations to optimize various training parameters[11]. The basic 
structure of an MLP consists of three layers: the input layer, hidden layers, and the output layer. The 
input layer receives data features as its input, with each feature corresponding to an individual input 
neuron. The hidden layer is situated between the input layer and the output layer. It may contain one or 
more hidden layers, each containing multiple neurons. The output layer produces the model's predicted 
results, with each output corresponding to an output neuron. These neurons are typically used to 
represent classification categories or regression values in academic papers. 

The MLP model iteratively updates its weights to enhance the accuracy of its predictions, adjusting 
based on the learning algorithm's feedback. The principle of the MLP model is shown in Figure 4. 

 

Figure 4. Schematic diagram of multi-layer perceptron model principle. 



This study employed a dataset of 800,000 samples split into training and validation sets in a 7:3 
ratio. Given the substantial size and diversity of the dataset, data augmentation techniques were 
deemed unnecessary. Then, we used the MLPRegressor function from sklearn for model training, 
applying the Adam optimizer to speed up the training process and mitigate the risk of overfitting. We 
set the hidden layer sizes to 64 and 32, the activation function to the corrected linear unit function 
(RELU), and the maximum iteration count to 500. 

The Adam optimizer is a gradient descent algorithm utilized for training neural networks. It 
integrates the momentum and adaptive learning rate algorithms, resulting in expedited convergence 
and enhanced generalization ability by calculating distinct adaptive learning rates for each parameter. 
The update rules for the Adam optimizer are as follows: 
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Among them, g୲ is the gradient of the parameter, βଵ and βଶ are the attenuation coefficients of two 
exponential weighted averages, mෝ ୲  and vො୲  are the moving averages of the gradient after deviation 
correction, θ୲ାଵ is the updated parameter, η is the learning rate, and ϵ is a tiny constant used to avoid 
dividing by zero. 

The training loss is shown in Figure 5. 

 

Figure 5. Training loss. 
 
The measurement standard we use to verify the accuracy of the model is RଶሺR െ squared, also 

known as the coefficient of determination), which measures how well the regression model fits the 
sample data. A Rଶvalue closer to 1 indicates a better fit of the model to the data. The formula is given 
as Formula (3): 
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where y୩ represents the true target value for the i-th observation and yො୩ is the predicted value of the 
model for the same observation, y denotes the average target value of all observations, n is the number 
of samples. 

The final results we obtained are shown in Figure 6 and Table 4. The blue line depicts the actual 
values, while the red line represents the predicted values. 



 

Figure 6. Line graph of flood probability prediction. 
 

Table 4. Model prediction results. 

Mean square error of the training set 0.00036385 
Mean square error of the test set 0.00036374 

Training set Rଶ 0.79732624 
Test set Rଶ 0.79626938 

 
Based on the above results, we optimized the neural network model by applying the L2 

regularization to alleviate the problem of overfitting and improve the model's generalization ability. 
The updated code introduces an alpha parameter of 0.001 through continuous optimization and 
iteration, improving the model's prediction accuracy and practical utility. This regularization technique 
introduces an additional regularization term to the loss function by applying a penalty term to the 
square of the model coefficients.  

Assuming we have a linear regression model, the mean square error loss function is presented in 
Formula (4): 
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L2 regularization introduces a regularization term into the original model's loss function to penalize 
the parameters' magnitude. The form of the L2 regularization loss function is as Formula (5): 
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where λ is a non-negative regularization parameter used to control the strength of the regularization 
term, which needs to be selected through methods such as cross-validation. 

 

Figure 7. Comparison between actual and predicted flood probability values. 



Table 5. Optimized model prediction results. 

Mean square error of the training set 0.00036912 
Mean square error of the test set 0.00036816 

Training set Rଶ 0.85331226 
Test set Rଶ 0.85271417 

 
The findings of the enhanced model are illustrated in Figure 7 and Table 5, showcasing a 

comparison between actual disaster data and predicted outcomes. The mean square errors of the 
training and testing sets are minimal, at 0.000369 and 0.000368, respectively. The R² values for the 
test and training sets are 0.8533 and 0.8527, respectively. These results indicate that although the 
number of indicators in the model has decreased, the Rଶ has significantly improved, demonstrating a 
strengthened model effectiveness. The model's prediction results are more accurate. 

This study introduces a novel mathematical modeling approach based on a multi-layer perceptron. 
We have identified key features that significantly impact flood probability by integrating correlation 
analysis with the traditional random forest algorithm and conducting sensitivity analysis. This 
approach also eliminates extraneous factors, reduces the subjectivity in parameter weighting, and 
enhances model interpretability. The experimental results confirm that the proposed model shows 
robust predictive performance and can be a valuable tool for forecasting flood risks and addressing 
other natural disasters. 

4.  Conclusion 
This study introduces a novel mathematical modeling approach based on a multi-layer perceptron. By 
combining correlation analysis with the traditional random forest algorithm and conducting sensitivity 
analysis, we have identified features that significantly impact flood probability. This approach 
eliminates extraneous factors, reduces the subjectivity in parameter weighting, and improves model 
interpretability. The experimental results demonstrate that the proposed model exhibits robust 
predictive performance and can serve as a valuable reference for forecasting flood risks and mitigating 
other natural calamities. 
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